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Thermal renormalization of the anchoring energy of nematic liquid crystals
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The temperature dependence of the anchoring energy of a nematic liquid crystal on thermal fluctuations is
studied. We consider the weak anchoring case, where the interaction of a nematic molecule on the surface with
the substrate is small with respect to the mean field energy due to the other nematic molecules. The analysis is
performed by means of a perturbation method in which the expansion parameter is the surface interaction. The
presented model is valid for any value of the scalar order parameter. We show that the renormalization of the
anchoring coefficients due to thermal fluctuations is proportional to the generalized scalar order parameters.
We show also that, at the lowest order in the scalar order parameter, Landau-like theories agree with our mean
field approach. An expression for the thermal renormalization of the anchoring coefficients valid in the low
temperature region, where the fluctuations are small, is derived. The agreement between our theoretical pre-
dictions and the experimental data obtained by other groups is fairly good over a large temperature range.

PACS numbds): 61.30.Cz

[. INTRODUCTION are not immediate. For these reasons, in our paper we pro-
pose an analysis of the anisotropic part of the surface energy
Nematic liquid crystals have the long range orientationalbased on the mean field. It is valid for all values of the
order of anisotropic moleculg4]. In uniaxial nematic liquid nematic scalar order parameter, and allows a simple under-
crystals with macroscopic cylindrical symmetry, the directorstanding of the effect of the temperature on the anchoring
n, which is a unit vector along the average direction of ori-coefficients.
entation of the rodlike molecules, is apolar in nature. They In our analysis, we expand the surface energy in a series
are characterized by a tensor order pararrétmf elements  Of spherical harmonic functions. The coefficients of the ex-
Qi;=(3/2)[nin;— (1/3)8;]. S'is the nematic scalar order pansion are the experimentally detectable a'nchorlng. c;oeffl—
parameter given b= (nq;;n;), where() means the statis- cients. According to our model, all the anchoring coefficients

tical average, andy; =(3/2)(u;u;—(1/3)6,] are the ele- of the same order depend on the temperature in the same

! manner. From this result it follows that in nematic liquid
ments of a molecular tensor defined by means of the molecu-

. . . crystals the alignment transitions driven by the surfébe
lar orientationu (parallel to the long molecular ajisThe y g y ¢

- . . . so called temperature surface transitioai® due to a surface
tensorq is defined in such a way as to take into account th P

) nchoring energy that contains contributions of different or-
guadrupolar symmetry of the nematic molecules. For thesaerS

media, the bulk macroscopic properties and their temperature OLlr paper is organized as follows. In Sec. Il the usual

dependencies are well understood and interpreted by meapgndau-like description of the surface energy characterizing
of existing theorie§2-7]. In contrast, the contrary, the in- the nematic-substrate interface is recalled, and the tempera-
fluence of a solid substrate on the macroscopic properties @fire dependence of the anisotropic part of the surface energy
a nematic liquid crystal is far from being understood in all briefly discussed. According to this approach, based on the
aspects. There exists experimental evidence that a solid supymmetry of the nematic phase and of the substrate, the an-
strate is able to orient in a well defined direction, called the isotropic part of the surface energy is expanded in a power
“easy axis” and indicated by. This results from a direct series of the surface scalar order parameter, which is consid-
interaction between the nematic medium and the substrate. éred a small parameter. However, since the nematic-isotropic
is such as to minimize the anisotropic part of the surfacghase transition is of first order, with a jump of the scalar
energy of the two media in contal@]. In some situations a order parameter at the transition temperature~@¥.3, this
temperature dependence § has been observe[®-19. parameter is not really very small, and to use it as the expan-
This is a consequence of the temperature dependence of ten parameter could be questionable. In Sec. Il a model
anisotropic part of the surface energy. A theoretical descripbased on a perturbation method is developed, in the frame-
tion of this phenomenon has been given with Landau-likework of mean field theory, valid for all values of the scalar
models based on symmetry, similar to the ones used for therder parameter. According to this model, the surface energy
bulk [20—24], or with microscopic models based on the On-is expanded in a power series of the surface interaction,
sager's theory[25-29. However, the applicability of which is very small with respect to the nematic mean field
Landau-like approaches is questionable, as will be discussezhergy in the weak anchoring situation. In Sec. Il this model
in Sec. Il, and the microscopic models contain a large numis applied to the simple case of a nematic liquid crystal lim-
ber of unknown parameters so that their physical predictioned by a flat isotropic surface and by a surface having mono-
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clinic symmetry. In Sec. IV a comparison with the Akulov- W=Ag+ Ak Qi K+ AQ;; Q; +/-\3(kiQijkj)2
Zener law is discussed, and approximate expressions for the
thermal renormalization valid in the low temperature range +A4kiQilQljkj+o(§)’ @

are deduced. In Sec. V we reobtain the results of Sec. Ill and . .
t second order in the surface order parameter. Strictly

Sec. IV using the procedure of averaging with a continuoug® K iof) | id only f IS However
Hamiltonian. Section VI is devoted to a comparison of the>PEaxINg Expansiott) 1s valic only for sma owever,

. g since the nematic-isotropic phase transition is of first order
r model relevant to the tempera= . " '
theoretical predictions of our mode relevant to the tempera ith a finite jump ofS at the critical temperatureA(S~0.3

ture dependence of the anchoring energy strength with th 2]), it is not clear when Eq(1) works well. In Eq.(1) the

experimental data obtained by other groups. The main resul . . .
of our paper are discussed in Sec. VII. quantitiesA; are temperature independent phenomgnologmal
parameters. As discussed in Refg0,22 the coefficients
A, A3, andA, of the quadratic terms B in Eq. (1) arise
) from modification of the mean field potential between two
Il. SURFACE ANCHORING ENERGY: CONSIDERATIONS nematic molecules near the substrate. In contrast, the coeffi-
BASED ON THE SYMMETRY cientA; has contributions both from that effect and from the

We suppose that the nematic liquid crystal occupies thélirect wall-molecule interactiof35]. Using for Q;; the ex-
semi-infinite spacez=0, bounded by a flat and homoge- PressionQ;;=(3/2)S[n;n;—(1/3)3;;], wheren=ng, Eq.(1)
neous substrate @=0. In our analysis we consider only Can be rewritten in terms of the angle=cos ‘(ns-k)
uniform liquid crystals. In this framework the presence of theformed byns with k as
surface does not introduce any biaxiality, and from the crys-
tallographic point of view the nematic is characterized by the W=Wjy+W,P(cost) +W,P4(cosb), 2
uniaxial tensor order parametéy.

Let us consider the anisotropic part of the surface energ
W characterizing the nematic-substrate interface. When an

y/vhere the coefficientsV,=W;(S), i=0,2,4, are given by

undistorted nematic liquid crystal is in contact with a solid Wo=Ag+ 1A, +2A51+5A, <,

substrate or limited by another medium, the nematic director 10

is oriented along the easy axig. For deviations of the ac- 3
tual surface directomg from the easy directiomy, W B8A3t+TA, _, 18
=W(ng,Ns). W(ng,Nng) corresponds to the minimum value Wp=A S+ TS ' W4:§;A3S :

of W, whereaswW(ngy,ng)=W(ng,ng) is the surplus of sur-
face energy due to the surface distortion=ng—n,. For By assuming for the surface value Sfthe temperature de-
small deviations ohg from ny, W(ns,ng) =W,P,(ns-Ng),  pendence obtained in the bulk, by means of the phenomeno-
where W,<0 is the macroscopic anchoring strength andlogical expansion given by E@2) it is possible to study the
P2(Nns:Ng) = (3/2)[(ns- np)*— (1/3)] the second order Leg- surface transitions induced by the temperaf@@21]. This
endre polynomial30]. This simple expression does not hold model can also be refined by taking into account that the
true when the deviation afig from ng is large. In this case surface scalar order parameter is different from the bulk one
W(ns,no) is usually approximated by an expansion in termsby means of a Landau-Ginzburg approg2i,36—38.
of Legendre polynomials[31] of the kind W(ng,ng) Sen and Sullivaf22] discuss how one can derive Ed)
=3 W, Py (ng- Ng). from a molecular mean field theory. They assume that the
As stated above, the easy directinp is defined as the free energyF of the system under consideration is a func-
surface orientation of the nematic director for which tional of the single-particle probability density, and that spa-
W(ng,ng) has a minimum. In the case of homogeneous subtial variations occur only in the direction[39]. F is written
stratesny depends on the physical properties of the substratas the sum of three bulk contributions. The first describes the
and of the nematic liquid crystal. Several interactions condinteraction between the nematic and the substrate, character-
tribute to the surface energy characterizing the nematicized by a potentialfu(z),z]. The second describes the
substrate interface. To find, in practice it is necessary to nematic-nematic interaction, characterized by a potential
write down the surface enerd¥y in terms of the elements of W u(z;),u(z,);|z1— 2|1, where the subscripts 1 and 2 are
symmetry of the surface and of the nematic liquid crystalrelevant to the two nematic interacting molecules. The third
and to look for its minimum with respect to the nematic term is a functional of the orientational distribution. To re-
director. Experimental data show thaj can be temperature duce the nonlocal two-body term to a local one, they make a
dependent. This phenomenon has been termed the “temperformal gradient expansion of the single-particle probability
ture surface transition” and discussed by several authordensity. Then, the effective surface energy generatind Bg.
[14-18,25,32-3}4 is defined by comparing the gradient expansion of the free
In the past the temperature dependencenphas been energy with the full starting expression fBr according to a
analyzed by following a procedure similar to the one usedstandard recip4Q]. In this way the surface energy receives
for the elastic description in the buJk], i.e., by decompos- contributions only from the direct interactions of the nematic
ing the surface energy in terms of the elements of symmetrynolecules with the substrate, vi#u,z) evaluated at the
of the surface and of the nematic liquid crystal, and using asurface, and from the incomplete nematic-nematic interac-
expansion parameter the scalar order paran®terthe case tion. Following this scheme it is possible to obtain the cor-
of a flat isotropic surface, characterized by the geometricalect number of terms of the surface energy. However, as
normalk, the surface energy is written §20—22 underlined above, the main limit of E@l) is that it is an



PRE 62 THERMAL RENORMALIZATION OF THE ANCHORING . .. 6713

expansion in power series of the scalar order parantgter scalar quantities we can build with the molecular tensor of

and this quantity is never very small. elements q;; = (3/2)[u;ju; — (1/3)6;;] and the elements of
symmetry characterizing the surface. Each term of the ex-
IIl. SURFACE ANCHORING ENERGY: MEAN FIELD pansion ofVg(Q) represents a given interaction, like the in-
APPROACH duced dipole—induced dipole or quadrupole-quadrupole in-

) . teraction and so on[42]; the “intrinsic” anchoring

In this section we reanalyze the temperature dependencefficientsw,(0) are physical parameters connected to the
of the anchoring energy using an approach based on meg{lhe of interaction described bly, (). In our analysis we
field theory. In our analysis we neglect all the inhomogeneyssyme that the physical properties of the substrate can be
ities. We assume, furthermore that the surface potential igonsidered constants in the temperature range of the nematic
short range. _ .. _phase. In this framework, sinag,(0) refer to specific fun-

Let us consider a surface molecule of the nematic liquidyamental interactions, they are temperature independent. So
crystal. It is submitted to the interaction with the other nem-inermal effects arise only from the temperature dependence
atic molecules and to the interaction with the substrate. Thgs ihe degree of alignment of the nematic molecules. For our
relevant interaction energies will be indicated\Wy andVs,  previous hypothesis of the temperature independence of the
respectively. The separation of the total energy of a surfacgnysical properties of the substrate, our theory correctly de-
molecule into a bulk part and a surface part is not well de<cripes nematic liquid crystals in contact with solid sub-
fined, because the nematic symmetry is broken near the SUirates. However, deviations from our predictions are ex-
face, as discussed in Appendix A. In our analysis we assUmMgected for nematic samples oriented by means of surfactants,
that Vi, due to the nematic-nematic interaction, can bepecause their thermal behavior is similar to that of the liquid
evaluated in a mean field theory. It is supposed position iNgrystal materials.
dependent. All variations dfy due to the broken symmetry  “For our future considerations it is useful to describe the
connected with the presence of the bounding surface are Cofyyolecular direction and the nematic director in terms of the
sidered as surface contributions, and enter in the effectlv50|ar angles with respect to a Cartesian reference frame hav-
surface energy's. ing the z axis parallel to the geometrical normal to the flat

The total energyV of a surface molecule i8/=Vy  syrface and the axis along the possible surface anisotropy.
+Vs. If Vy~Vs the extrapolation lengthb=K/W e indicate with®,® and 6, ¢ the polar angles defining
~aVy/Vs, whereK is an average elastic constant @@  andn, respectively. In this frameworks(q) can be rewrit-
molecular dimension, is of the order of a molecular dimen-+gp asVg(0,D)=3,w,(0)L(O,P). By decomposing the
sion[1]. In this case, in the continuum limit, it is possible to functionsL(©,®) in a series of spherical harmonic func-
putb=0 and assume that the surface nematic orientation igyng YT(O,d) we obtain L(0,0)=3,a"YNO, ).
fixed by the surface interaction. This situation is known asgjnce L,=L(§) and henceL (0, &)=L (7— 0,7+ d)
the strong anchoring case. The interesting case is the one jg, 4 k, we deduce thak=2l, i.e.,L, for oddk are absent
which Viy>Vs, whereb>a. It corresponds to the weak an- i, the expansion of/g(©,®). It follows that for nonpolar

choring IS|tL_Jatt|r(1)n, to V\lllhICh we vtv|II Ilmltdo:Jr mvestlge;[]lon. Ir:c nematic liquid crystalt »(0,®)=3,aTY"(0,d), and the
ouranalysis the smail parameter used 1o expand the surta icroscopic surface energy can be written as

energy in a power series\&/Vy<1, in the weak anchoring
situation. On the contrary the surface scalar order parameter
Sis not supposed a small quantity. V(0,8)=2 wy(0)Ly(0,d), (4)

V\ describes the tendency of the nematic molecules, char- !
acterized by the molecular orientatianto be oriented along o 55 follows from the discussion reported above, in the
the nematic directon. In the following it will be approxi-  5rm
mated by means of the Maier-Saupe mean fi8lg VM ac-
cording to WhichVaniqijnj= P,(n-u). In this framework
V',{"'= —vP,(n-u)S, wherev is a molecular constant artl
=(P,(n-u)) the nematic scalar paramefdq. We will con-
sider also a generalization of the Maier-Saupe theory proThe macroscopic anchoring energy(n)=W(6, ¢) is ob-
posed by Humphriest al. [41]. According to this general- tained by averaginys over the molecular orientations or
ized mean field theory the nematic mean field, which now weover ® and ®. Since in the problem under consideration
indicate by Vn, is given by VH= =20 Py(n-u)Sy, Vs<Vy, Vg can be treated as a perturbation. According to
whereS, =(P,(n-u)) are the nematic order parameters. the thermodynamic perturbation theorf43] we have

Let us now consideNg. It is clear that this interaction W(6,®)=(Vg(®,d)), and hence
has to describe the tendency of the surface to orient the sur-
face nematic molecules along a given direction, which we _ m/\m
have termed above the easy direction and indicatedpy W(G’d’)_Z Wz'(o)% 2z1(Y21(0, ), ©)
This direction depends on the symmetry of the surface and
on the molecular properties of the mesophase. Taking intavhere (A)=Tr(pA)/Tr(p), and p=exp(—pBV,) is the den-
account that we limit our analysis to nonpolar medighas  sity matrix. In order to derive the macroscopic surface en-
to be an even function ai. It follows thatVg is actually a  ergy W(#6,$) we have first to expresgs(®,d) in terms of
function of the tenso and can be written, in general, as a polar coordinate system based on the direat@s polar
Vo(u)=Vs(q) == W (0)L (), where L(§) indicate the axis. The Cartesian reference frame has to be rotated in such

vs<®,<1>>=2I w2|<0>§ anYn(o,d). (5)
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a way thatz’=n=(u). We will indicate by, ¢ the polar 1ol
angles ofu with respect to the rotated coordinate system. In
this casd 44] 0.8

Y(0.8)=3 D, (6.6 (00), @

m S(D 0.4

where D'm’m,(0,¢>) are the elements of the Wigner matrix. U; 0.2
Since there is axial symmetry about the directiomah the
unperturbed system, only the membar=0 of the Y" is 004
different  from  zero.  Consequently (Y[ (9,¢)) 04 05 06 07 o8 09 10
=(Y)(9))6wo and from Eq. (7 we obtain that S

(Y(®,®))=Dy,o(0,$)(YX(9)). By taking into account

. FIG. 1. Dependence dfP,(n-u))=S, vs S The Sdependence
that[44] D}, «(0,¢)=Y["(8,$), we have finally, as follows P dPa(n-u))=S, P

of S%, which is the next term in the surface energy expansion pre-

from Egs.(4) and(6), dicted by Landau-like analyses, and$#’® predicted by our mean
field approach in the large range §fare also shown. As is evident
W(0'¢):z| W2|(0)<P2|(n- u)>L2|(0, b), (8) from the figure, the Akulov-Zener law works well when the fluc-

tuations ofu with respect toan are small(large S).

; 0
where we - have taken ‘into account thafy (9, ) The ratios(P,(n-u))/S vs S for 1=2,3, and 4, in the

=P, (cos¥). Equation(8) is a consequence of the fact that . o . :
we regard all anisotropic effects as perturbations, so that thegla'er'_S aupe approximation can be eas_lly evaluated_ in the
do not need to be included in the computation of the averagheématic phase, where 8:4<0.7. A direct calculation
values. By comparing E8) with Eq. (4) we deduce that the ShOWS tha{P3(n-u))/S<0.1, forl =3,4. This explains why

temperature dependence of the parameters describing the tgually the anisotropic part of the surface anchoring energy

isotropic part of the surface energy is given by given by Eq.(8) is well approximated by few termjgl5].
Let us consider, as an example, a nematic liquid crystal
Wo (T) =Wy (0)(Py(Nn-u)). (99 limited by an isotropic substrate, using the simple Maier-

Saupe mean field theory. In this case only the polar afgle

Let us calculatg Py (n-u)) in the mean field approxima-  gniers into the description, aid, (6) = P, (cosé). From Eq.

tion. By assuming/=Vy , Eq.(9) gives (10) we obtainw,(T)/w,(0)=S. This means that at the low-
1 est order inS the temperature dependence of the anchoring
f Po(n-u)exd BuPy(n-u)Sld(n-u) energy deduced by means of symmetry considerations, as in
wa(T) _ Jo Eqg. (2), and by means of the mean field agree. In fact, ac-

W (0) cording to the recipe based on symmetry one Wa%T)
=A;S and according to the mean field,(T)=w,(0)S.
(100  However, forl=2 there is a discrepancy between the two
approaches. In fact, according to the mean field we have
The integrals can easily be calculated and give the tempergy,(T)/w,(0)=S, and W4(T) /W4 (0)=(P4(n-u))#S?,
ture dependence we are looking for. By assumifig=Vy,  whereas the approach based on symmetry predicts the tem-
Eq. (9) gives simply perature dependencies given by E8). More precisely, it
Wi (T) predicts a renormalization of the coefficient®f(cosé), by
Zan . (11  means of & contribution, and a temperature dependence of
w2 (0) the coefficient ofP ,(cosé) like S?. Of course, in the limit of
gmaIISthe two predictions agree. In fact,¥<1 the renor-
malization of P,(cos#) in S? can be neglected with respect

to the linear term inS. Furthermore, in this approximation,

flexp[ﬁv Po(n-u)Sld(n-u)
0

This means that in the framework of a generalized mean fiel
theory of the kind represented Mﬂ the temperature depen-

dence ofw,(T)/w,(0) coincides with the temperature de- (P4(n-u))cS2. However, in the case of largthe discrep-

pendence of the (th scalar order parameter. ancy between the two approaches can be large. In Fig. 1 we

According to the analysis presented above, where th 2 o ,
macroscopic anchoring energy is given by the series exparplOW{Pa(n-U)) andS® vs S From this figure it follows that

sion in spherical harmonic functions shown in E§), the N the nematic range (04S<1) the difference betwee’
thermal renormalization of the anchoring coefficients isand{(P4(n-u)) is always rather large.

given by Eq.(10) or by Eq.(11). From these results it fol- Let us consider now a nematic sample bounded by a sur-
lows that anchoring coefficients of the same order in thdace having monoclinic symmetry, such as the one obtained
expansion have the same temperature dependence. Conbg-means of the SiO oblique evaporation technigiéd. The
quently, in the framework of our model, temperature surface€y,z) plane is the evaporation plane, the normal to the sub-
transitions are possible only in nematic samples whose arstrate is parallel to theaxis, and the direction of the grooves
choring energy contains contributions from different orderscoincides with thex direction. In this framework, at second

in the spherical harmonic function expansion. order in the spherical harmonic expansion we have
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2 T 3
D P)= my/m 1-59? ex;{ 3(1——132”19(113
L,(0,D) mzzazvz((a,cp). (12 wy(T) fo( )exp B 5
wu(0) ™ 3
+(0) f exp{ﬁvs(l——f}z”ﬁdf}
Since[46] 0 2
10
YZ2(®,d) = \15(32m)sirPO exg +2id), 17355
10
Y:4(0,0)=F 15(8)sin® cos® exp =i d), (13) ~eXp ~ 35,8/ (16

Y9(0,®)=5/(167)(3 co$0 — 1),
from Eq. (8) we obtain

W( 8, p)=wW,(T)[C,c0926)+ C,sirnff cog2¢)

+Cgsin(26)cosp], (14

where C; are numerical factor§47]. This equation shows

clearly that, at second order in the spherical harmonic func-
tion expansion ofW(#@,), the nematic orientation is ex-
pected to be temperature independent. The temperature sur-
face transitions, in which the nematic orientation variationsE
are driven by the surface, can be interpreted, in the fram
work of our model, only by taking into account also terms in

Y7(0,d) in the microscopic surface eneryig(©,d).

IV. COMPARISON WITH AKULOV-ZENER LAW

At low temperature, when the fluctuations are small, i.e.,

—BV\>1, itis possible to rewrite Eq10) in an interesting

e_

Since according to the Maier-Saupe the@sy (P,(n-u)),
from Egs. (15 and (16) we havew,(T)/w,(0)=S and
W4(T)/W,(0)=S" In Fig. 1 we showP4(n-u)) andS'%3
vs Sin the nematic phase (064S<1). As follows from this
figure, for large values 08 (P,(n-u))~S!*2 In the same
figure we also shows?, which is the term predicted by
Landau-like models at second orderSn

The calculations reported above for 1 andl =2 can be
generalized for all. The final result is that in the low tem-
perature region the thermal renormalization of the anchoring
coefficient is

Wy (T)

e . — al(21+1)/
WZI(O) <P2|(n LI)> S 2t 3'

17

guation (17) has been obtained by aSSLImiN@ZVM .
However, as is shown in Appendix B, it holds true also in the
case wherd/\=VH.

Expression(17) can be compared with the Akulov-Zener
law for ferromagnetic materials well known in solid state
physics[51,57,

n(n+1)/2
Lo(T) _ ( MS(T)) | 8

Ly(0) | Mg(0)

manner, well known in other fields of solid state physics as
the Akulov-Zener law48,49. In order to obtain this expres- whereMg(T) is the magnetization and,(T) is the n-order
sion, we have to take into account that in the low temperacoefficient of the magnetic crystallographic anisotropy, mag-

ture region, wher&~1 and hence the fluctuations ofwith
respect ton are very small, n-u=cosd~1—(1/2)9?
+0(4), ie., 9<1l. In this framework Py(n-u)~1
—(3/2)9%+0(4), and P4(n-u)~1-592+0(4). Conse-
quently, by taking into account thatw,(T)/w5(0)
=(Py(n-u)) and w,(T)/w,(0)=(P4(n-u)), we obtain
[50], by assuming/y=Vy ,

gt
WZ(T)_fO(l 219 exg BvS| 1 219 ddY
wy(0) f”

0

3
exp{ﬁvs( 1- Eﬁzﬂﬁdﬁ

1

BvS

s
~eX _,WS

(15

and

netostriction, etc.

It is not difficult to show that expressio(lL7) follows
immediately from the Akulov-Zener law. Indeed, in the low
temperature range whei®~1 and henced<1, P;(n-u)
=n-u~1-(1/2)9% P,(n-u)~1—(3/2)9°~P3(n-u).
Consequently, S(T) =(P,(n-u))~(P;(n-u))3=q>. Since
Mg(T)/Ms(0)=(Py(n-u))=gq, Eq. (17) yields

Wy (T)

_ @i+
Wy (0) ’

(19

which is just the Akulov-Zener formula faw, (T).

Although the proof of Eqs(15) and (16) is rigorously
valid only for small perturbations and low temperatures, an
exact calculation performed for magnetic materigis]
shows that the power law is fairly accurate even for rela-
tively large perturbations, and is roughly followed almost up
to the critical temperature.

At arbitrary temperatures we have

Wy (T)

WZ<P2|(H- u)=Ly(Z2 HS(T))),

(20
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where
f D(9)cognd)exp — BHy)
! <C05{nﬁ)>loc: (26)
Pa(n-u)exd Py(n-u)/7]d(n-u
| putn-wextp,n-wisldn-u) [ otoro_pro
En: 1 ’ (21)
fo exf Pa(n-u)/7]d(n-u) By writing cosfd) in the exponential form, and taking into
account the expression fét, written above, we obtain
1
fo Pa(n-u)exe Po(n-u)/7]d(n-u) s (2 11 f dA(q)dB(qg)e d
Z= = q
1 , <Coinﬂ)>loc: Re . (27)
exd Po(n-u)/7]d(n-u _
fo HLP2(n-wirld(n-u) I1 f dA(q)dB(q)e "
q
and A, B
In Eq. (27) yq= ¥4+ 74, Where
1 kgT 23 )
T= = 1 n cogq-r)
BuS(T) vS(T) A_T 2 1 7
is a reduced temperature. This parametric representation al-
lows one to deducéP, (n-u)) as a function ofS without n’> cos(q-r) 28
knowing the interaction parameter + 28VK qz ’ (28)
V. PROCEDURE OF AVERAGING WITH A CONTINUOUS 1 n sing-n)]?
B_— 2 i L,
HAMILTONIAN 'yq—z,BVKq B(q)—i VK
The aim of this section is to reobtain the results of Sec. Il
and Sec. IV using the procedure of averaging with a continu- n?  sirf(q-r)
toni i i — (29
ous Hamiltonian(elastic energy density According to Eq. 28VK 2
(8) the macroscopic anchoring energy can be expanded in a q
series ofL,(6,¢). The expansion coefficients are the an- g
choring coefficientswy (T) =wy (0){Py(n-u)) thermally
renormalized by the presence(@, (n-u)). Using the local 1
reference frame, in which- u=cosd, whered=9(rg) and quzﬂVqu[Az(Q)'f‘ B2(q)]. (30)

rs is the position vector of a surface nematic molecule,

P, (n-u) can be decomposed as

|
P,(N-U)= Py, (cosd) = ZO b2l cog2md),  (24)

m=

where b3l are numerical factorf46]. From Eq.(24) it is
possible to obtain the thermal averagePof(n- u) using the

Taking into account thaf;dx exp(—\x?)=\/m/\, we have
for the thermal averages we are looking for

r]2

1
<C05(n19)>loc:exf{ - 28VK % ?) . (3D

Since

procedure of averaging with a continuous Hamiltonian. We

indicate with the subscrigbc the thermal average obtained
in this framework. We have

|
<P2|(n'u)>:mE:0 b2l (cosg2m®))joc - (25)

In the local reference frame, whengz’, the elastic energy
density is fo=(1/2)K(V®)?, as shown in Appendix C,
where K is the Frank elastic constant, of the order Kf
~Vy/a [1]. This expression fof is valid in the harmonic
approximation. Hence it holds true only fdr<1. By de-
composing ¢ in a Fourier series we haved
=2 4[A(g)cos@-r)+B(qg)sin(@-r)]. The elastic energy,

= [yfodr, whereV is the volume of the nematic sample,
using Fourier's expansion ofd, is given by Hj
=(VKI2)=Z,q%A%(q) +B?(q)]. The thermal average of
cosh) is

1 Amax=27/2 1

1
= ==, 32
\Y A=0min~0 qz 8ma ( )

we obtain, finally, (cos@®))e.=exd—(1/2)n’t], where t
=1/(4wpBKa). It follows that (cos(and)).=exd —2ntt],
and consequently, using E(5),

|
(Pa(n-u)= 2 biexd —2ma], (33

which represents a generalization of the result reported in
Ref. [45].

The expression used above fég is valid only in the
quadratic approximation for the elastic energy. It follows that
the thermal fluctuations ofi with respect ton have to be
small. This implies thaty<1, and hence, as follows from
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the expression fofcosfid)),. written abovet<1. In this 1.1
approximation exjp-2mét]~cos(2m/t). By substituting this 10
result into Eq.(33) we obtain
0.9
| . ]
« 0.8 4
(Pa(n-w)= > b3 cog2m). @9 5]
m=0 9 . ]
o 064
It is useful, for further considerations, to pyit=(9). In this 2 sl
manner Eq(34) reads ; ]
0.4 4
| ]
0.3 4
(Pa(n-u))= X bi,co82m(d))=Py(cogd)),
(35 0 i 2 3 ! 5 6
Ty T
if Eg. (24) is taken into account. The macroscopic anchoring _ _
energy can be rewritten, as follows from E@) and Eq. FIG. 2. Behavior of _the anchoring energy strength near a tem-
(35), as perature surface transition at the nematic substrate interface accord-
ing to Di Lisi et al.[13]. Points: experimental data; solid line: our

o best fit.
w<9,¢)=§0w2.<0>P2|(cos<ﬁ>>L2|(a,¢>. (36)

2
w:{d W(Za)] =—> 121+ 1)wy(T).  (40)
By taking into account thatd)<1 we have that do 6=0 !
1(21+1) w>0 because the homeptropic or_ientation is stable in the
(Py(n- u))~exp[ - T({})Z] (37)  absence of the magnetic field. As discussed above, two terms
of the expansion Eq39) are enough to approximat&/( 6).
By assumingW(6)=w,(T)P,(cosé)+w,(T)P,(cosb), Eq.
and (40) reads

<P2(n-u)>=s~exp[_§<ﬁ>2]- (39) W=~ [3wz(0)(P2(n- w)) + 1084 (0)(Pa(n-w)]. (41

if Eq. (9) is taken into account. In the following EG1) will

From Eq.(38) the thermal average af is connected t& by be written as

(9)2=—(2/3)InS. Substituting this result into Eq37) we - ,

have finally (P, (n-u))=S@*YB which coincides with w=aSty(Pa(n-w), “2

the Akulov-Zener law reported above in the low temperaturavhereS=(P,(n-u)), a@=—3w,(0), andy= —10w,(0). In

region. the low temperature region, whe(@,(n-u))=S% Eq.
(42) is equivalent to

VI. THEORETICAL PREDICTIONS AND EXPERIMENTAL W= aS+ 'ySlOB. (43)
DATA
In Ref. [13] the experimental data refer to the nematic
guid crystal dialkoxyphenilbenzoatésO05 sandwiched
etween two glass slides coated with diacetylenic phospho-
|ipid surfactant. This sample is shown to exhibit a surface
structural transition several degrees below the nematic-

The temperature dependence of the anchoring ener
strength has been measured by several groups with differe
techniques[13,19,36,37,54—537 In this section we shall
compare our theoretical predictions with the experimenta

data. ; . o
0|_sotrop|c phase transition temperatuB(), at T=Tg. For

The simplest case to consider is the one relevant to is N T<T. th e i formlv ori dinthe h
tropic substrates treated with a surfactant to give homeotro-5— "~ ' NI the sample Is uniformly oriented in the homeo-

pic orientation. In this experimental arrangement the anchorl/OPIC orientation, whereas fof <Ts the sample is tilted.

ing energy strength is usually measured by means of ghe measurement oiv_has been done in the _temperature

Freedericksz-type experimefit3,54. The anisotropic part '@N9€Ts<T<Ty,. InFig. 2 we report the experimental data

of the surface energy relevant to this situation is given by from [13] and our theoretical best fit, obtained by means of
Eq. (43). For S(T) we assume

T T 1/2
C—) , (44)

W(6) =2 Wz(T)P2(cost) (39 S(T)=S(Tw)| ==
¢ INI

as discussed at the end of Sec. Ill. The anchoring energyith S(Ty,)~0.32 andT.— Ty,~0.5K [58]. The parameters
strength is experimentally deduced by measuring the threslof the best fit arex~2.04<10°2 erg/cnf and y~—1.17
old field for the Freedericksz transitidd,30]. In this way X102 erg/cnf. The agreement of our theory with the ex-
one measures the quant{t/3,54 perimental data is reasonably good.
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8 the molecular quadrupolar momentum modulus, and the di-
] polar momentum induced in the surfactant.

The first contribution to the surface energy is proportional
to A(p%(t)), whereA is a molecular property ang means

Ng ] a time average. After thermodynamic averaging, the macro-
S 4 scopic surface energy connected to this term is found to be
[}
© ] o Sample A A(p?(t))S. Hence,a§A<_p2(t)>. .
- : Samole B The second contribution to the surface energy is propor-
z 7] ¢ vample tional to GeZ, whereG is another molecular property. The
14 ¢ relevant contribution to the macroscopic surface energy is
ol Ge)P,). Consequently=Gej.
0 5 10 15 20 Hence, the surfactant plays two different roles. First, it
T T strongly reduces the effect of the surface field due to the

) substrate, because it introduces a screening between the sub-
FIG. 3. Temperature dependence of the anchoring energrate and the liquid crystal. Second, it is responsible for the
strength at the nematic liquid crystal-wall interface according tojnteraction between the nematic molecular fluctuating dipole
Rosenblat{54]. Points: experimental data; solid line: our best fit. and the static quadrupole and the induced dipole in the sur-

In Ref. [54] the experimental data refer to the nematic factant. The_ first pontribution is proportional to the square qf
liquid crystal N{P-methoxy benzilideneP-butylaniline the fluctuating dipole, whereas the second contribution is
(UBBA) in a cell with glasses treated with dodecyl- proportional to the static quadrupolar momentum. For this
trimethyl—ammonium chloridéDTAC). In Fig. 3 we report  reason th&P,) contribution tow is expected to be not neg-
the experimental data frofb4] and our theoretical best fit ligible with respect to theS contribution.
obtained by means of E@¢42). Since the temperature range  The classification of the contributions t@ from funda-
is of the order of 20 K, it is no longer correct to use &{iT) mental interactions reported above is supported by the ex
its expression given by Landau’s theory, of the kind of Eq.perimental data of Ref57], where the anchoring energy of a
(44), and the Akulov-Zener approximation foP,). For the  monomer and its dimer at a polymer-coated interface is mea
fit we use forS(T) and for(P,)(T) the experimental data sured. The liquid crystal investigated is 5005 and its dimer.
obtained by measurements of resonance Raman scatterimgese liquid crystals have rather low conductivity. Hence, in
[58]. The parameters of the best fit are~3.54 3 first approximation, we can neglect the contribution to the
X107% erg/cnt andy~25.10<107% erg/cnt. In Fig. 3the  anisotropic part of the surface energy connected with selec-
open and closed circles refer to two different samples of theive ion absorption, giving rise to a static surface field.
same liquid crystal, indicated with the names “sample A”  The samples were in planar alignment, obtained by rub-
and “sample B,” analyzed if54]. In this case also the ping glass substrates coated with polymide. The anchoring
agreement between our theoretical predictions and the eXnergy was obtained by measuring the Freedericksz mag-
perimental data is reasonably good over the whole temperaretic threshold field in the splay geometry. The experimental
ture range. data show that for both monomer and dimer the anchoring

A comment concerning the parametersand y of our  energy increases with decreasing temperature. The anchoring
best fits is necessary becauges of the same order as or energy for the dimer, however, was found to be an order of
larger thane. The contribution ofw linear in S could be  magnitude larger than that for the monomer, at comparable
connected with the interaction of the nematic molecules withreduced temperature. According to the authors of Rsf]

a surface fieldE(z), static [59] or fluctuating, due to the this monomer-dimer pair represents a nearly ideal system for
substrate. For homogeneous substrates, limited by a flat sustudy: one species is simply two monomers attached almost
face, this field is parallel to the surface geometrical normalrigidly end to end. From this observation, it follows that the
The relevant contribution to the surface energy is proporfluctuating dipole, along the major axis, of the dimer is twice
tional to g;;EE; or to q;;JE;/dx; . The first term is due to that of the monomer. Furthermore, the electrical quadrupolar
the molecular dielectric anisotropy, the second to the momoment of the dimer is also expected to be twice that of the
lecular quadrupolar momentum. These terms, after thermamonomer. The surface energy is proportional to the number
dynamic averaging, are proportional $ They are present of interacting atoms forming the nematic molecules, which
even in the case in which the substrate is isotropic. Howevefor the dimer is twice that for the monomer. Consequently
the experimental data analyzed in our paper refer to nematig|(dim)=2.4(mon) andg(dim)=2G(mon). Hence, we ex-
samples, homeotropically oriented by means of surfactantgect that the anchoring energy for the nematic liquid crystal
In this case the surfactant deposited on the glass plate givésrmed by dimer will be eight times that of the liquid crystal
rise to a smectié-like layer, characterized by anisotropic formed by the monomer. Our prediction about the increase
dielectric properties, in particular by anisotropic polarizabil- of the anchoring energy for the dimer is a little smaller than
ity. It follows that the electrostatic interaction between thethat detected experimentally. However, we are aware that
nematic medium and this smectelike layer gives a con- other interactions contribute to the effective anchoring en-
tribution to the anisotropic surface energy. It is mainly due toergy, and our prediction has to be considered just as a very
the interactions betweefi) the fluctuating dipole in the rough estimate.

nematic moleculep(t)=p(t)u and the dipolar momentum In Fig. 4 and Fig. 5 we present the experimental data from
induced in the surfactant, and) the %Iectrical quadrupolar [57] relevant to monomer and dimer, respectively, and our
momentum of the nematic molecul&=e,q, wheree, is  best fits. Since we do not know the tr&T) and(P4)(T)
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0.35 - VIl. CONCLUSION

. We have evaluated the thermal renormalization of the an-
choring energy for the whole angular range of the surface
director. It has been shown that the renormalization due to

0.30

€ 0% the thermal fluctuations of the anchoring coefficients is

S 1 of the kind wy (T)/wy(0)=(Py(n-u)). If the nematic

& 020 phase is described by means of a generalized mean field

© ] > theory one simply obtaing, (T)/w, (0)=S,,, whereS,, is

= o1 > the (2)th scalar order parameter. In the particular case in

= which the nematic phase is described by the Maier-Saupe
0.10 theory, w,(T)/w,(0) coincides with the average value of

the (2)th Legendre polynomial. We have also shown that at

5 10 12 14 18 18 the lowest order in the scalar order parameter the simple
T, T approach based_ just on the symmetry of the problem agrees
with our mean field approach.

FIG. 4. Temperature dependence of the anchoring energy
strength for the monomer 5005 planar orientation according to
[57]. Points: experimental data; solid line: our best fit. ACKNOWLEDGMENTS

, M A.K.Z. was partially supported by CNR-NATO. Many
functions, we evaluate them by assumig=Vy . The pa- : i
' N thanks are due to L. R. Evangelista, S. Faetti, C. Oldano, and

rameters of the best fits area(mon)~—1.14 g pontjfor useful and stimulating discussions.
X102 erglcnf,  y(mon)~4.81x10 2 erg/cnf, and

a(dim)~—9.81x10 2 erglcnf,  y(dim)~43.75<10 ?
erg/cnt. The results of the best fits confirm the model pro- APPENDIX A

posed. In fact, according to the discussion reported above, i . )
In the bulk the mean field energy due to the interaction of

a  A(pA(t)) a nematic molecule with other nematic molecules is of the
=—, (45 kind Vy=Vy(n-u), i.e., it depends only on the relative ori-

M 2
4 geo entation ofu with respect ton. The symmetry of the inter-
and action is SO3. Near the surface this symmetry is broken, and
Vy is, in general, of the type
p(t,dim)~2p(t,mon), eq(dim)~2ey(mon),
A(dim)~2A(mon),  G(dim)~2G(mon).  (46) Vn=Vn(r,u,n)=Vy(z,u-r,u-nj, (A1)
Consequently

wherer is the position of a given nematic molecule, arits
a(dim)  a(mon) distance from the surface. As discussed elsewf@&d§ the
(dim) - y(mon)’ (47 functional dependenqe &fy onu-r can be re;ppnsible_for
subsurface deformations. Near the surface it is possible to
rewrite Eq.(Al) as

in agreement with the results of our best fits.
3.5 4 Vy=Vn(n-u)+ 8Vy(z,u-r,u-n), (A2)

8.0 where

2.5

SVn(zZ,u-r,u-n)=Vy(z,u-r,u-n)—Vy(n-u) (A3)

2.0 4 .. .
represents the deviation of the actual mean field en¥hgy

from the SO3 symmetry. The functiofVy(z,u-r,u-n)#0

in a surface layer whose thickness is of the order of the range

of the molecular forces responsible for the nematic phase.

From this observation it follows thaiVy(z,u-r,u-n) can be

o 2 a4 &5 & 10 12 14 18 considered as an “intrinsic” surface energy. The effective

T T surface energy is then obtained by adding to the surface en-

ergy due to the direct interaction between the nematic mol-
FIG. 5. Temperature dependence of the anchoring energ?CUleS and the substrate the intrinsic surface energy. In our

strength of the dimer of 5005 with orientation accordind%@].  analysisVg has the meaning of the effective surface energy,

Points: experimental data; solid line: our best fit. andVy meansVy(n-u).

W (107 erg/cm?)
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APPENDIX B

Let us assum¥y= — 2095, P2 (cosd). In the low
temperature region, where the fluctuationsuofiith respect
to n are small,4<1. In this case

1
P, (cosd)=1— 5|(2|+1)192+0(4). (B1)
Consequently,
Vi(cos®)=—[N—M8?]+0(4), (B2)
where
1
N=2| v2Sy and M=§E| (21 +1)v Sy . (B3)
It follows that
9% Mgy
1 0
Sz|:<P2|(n'U)>:1—§|(2|+1) — .
f de My
0
(B4)
from which one obtains
[(21+1) [(21+1)
=i W’“GXF’[ TR R
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whereK,, K, andK; are the Frank elastic constanfs. In
the one-constant approximation, whekg=K,=K;=K,
Eq. (C1) becomes

Ho=3K [ [ n oo (2

In the local reference frame in whiah coincides with the
polar axis g axis), the fluctuations ofi(r) at any pointr are
described by small nonzero componenjér) anduy(r). At

the second order in,(r) anduy(r) Eqg. (C2) reads

Ho= ZKJ{[uxx(r)+uyy(r)]2+[uxy(r) Uy (N7
+ Uy )12+ [uy (1) 1}dr, (C3)

whereu; j(r)=du;(r)/dx; . Let us expandi;(r) in an expo-
nential Fourier series as

ui(r>=§ ui(q)exp(iq-r), (C4)

whereu* (q) =u;(—q) becausay;(r) are real quantities. By
substituting Eq(C4) into Eq. (C3) we obtain

KV
Ho=— 2 [lud@l*+u (@l (C5)

In particular, the main nematic order parameter is found tdn the limit of small fluctuationsu,(r)=1— (1/2)[ u(r)

be

3
S=(P,(n-u))= exp{ ZM) (B6)

By substituting Eq(B6) into Eq. (B5) we have, finally,
SZl — S|(2| +l)/3, (B?)

which coincides with Eq(17).

APPENDIX C

The aim of this Appendix is to show that in the local

reference frame the elastic energy density can be written as

fo=(1/2)K[ V9(r)]2. The elastic energy of a nematic liquid
crystal is given by

Hozéfv[Kl(div n)2+K,(n-rotn)2+Kg(nxrotn)2]dr,
(Cy

+u (r)] and alsouz(r) cosﬂ(r) 1—(1/2)92(r). Conse-

quently 92(r)= ux(r)+u (r). A simple calculation shows
that|19(q)|2—|ux(q)|2+|uy(q)|2 where 9(q) are the coef-
ficients of the exponential Fourier expansiondiffr). From

this observation we derive that EC5) is equivalent to

KV
Ho="% 2 ¢’[9(Q)f* (o)
It can be rewritten as
KV
5 2 aAAa)+B)], (o)

whereA(q) andB(q) are the Fourier coefficients of the ex-
pansion ofd(r) in terms of cogq-r) and sinQ-r), which we
have used in the text. A direct calculation shows that Eq.
(C6) can be obtained by assumifig=(1/2)K[ V 9(r)]? and
decomposingd(r) in a Fourier series.
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