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Thermal renormalization of the anchoring energy of nematic liquid crystals
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The temperature dependence of the anchoring energy of a nematic liquid crystal on thermal fluctuations is
studied. We consider the weak anchoring case, where the interaction of a nematic molecule on the surface with
the substrate is small with respect to the mean field energy due to the other nematic molecules. The analysis is
performed by means of a perturbation method in which the expansion parameter is the surface interaction. The
presented model is valid for any value of the scalar order parameter. We show that the renormalization of the
anchoring coefficients due to thermal fluctuations is proportional to the generalized scalar order parameters.
We show also that, at the lowest order in the scalar order parameter, Landau-like theories agree with our mean
field approach. An expression for the thermal renormalization of the anchoring coefficients valid in the low
temperature region, where the fluctuations are small, is derived. The agreement between our theoretical pre-
dictions and the experimental data obtained by other groups is fairly good over a large temperature range.

PACS number~s!: 61.30.Cz
na

to
ri
e

r
-

c

th
es
tu
ea
-
s
al
su
e
t
te
c

f
rip
ik
t

n

s
m

on

pro-
ergy
he
der-
ing

ries
x-

effi-
nts
ame
id

or-

ual
ing
era-
ergy
the
an-

wer
sid-

opic
lar

an-
del
me-
ar
rgy

ion,
ld

del
m-
no-
I. INTRODUCTION

Nematic liquid crystals have the long range orientatio
order of anisotropic molecules@1#. In uniaxial nematic liquid
crystals with macroscopic cylindrical symmetry, the direc
n, which is a unit vector along the average direction of o
entation of the rodlike molecules, is apolar in nature. Th
are characterized by a tensor order parameterQJ , of elements
Qi j 5(3/2)S@ninj2(1/3)d i j #. S is the nematic scalar orde
parameter given byS5^niqi j nj&, where^& means the statis
tical average, andqi j 5(3/2)@uiuj2(1/3)d i j # are the ele-
ments of a molecular tensor defined by means of the mole
lar orientationu ~parallel to the long molecular axis!. The
tensorqJ is defined in such a way as to take into account
quadrupolar symmetry of the nematic molecules. For th
media, the bulk macroscopic properties and their tempera
dependencies are well understood and interpreted by m
of existing theories@2–7#. In contrast, the contrary, the in
fluence of a solid substrate on the macroscopic propertie
a nematic liquid crystal is far from being understood in
aspects. There exists experimental evidence that a solid
strate is able to orientn in a well defined direction, called th
‘‘easy axis’’ and indicated byn0. This results from a direc
interaction between the nematic medium and the substra
is such as to minimize the anisotropic part of the surfa
energy of the two media in contact@8#. In some situations a
temperature dependence ofn0 has been observed@9–19#.
This is a consequence of the temperature dependence o
anisotropic part of the surface energy. A theoretical desc
tion of this phenomenon has been given with Landau-l
models based on symmetry, similar to the ones used for
bulk @20–24#, or with microscopic models based on the O
sager’s theory @25–29#. However, the applicability of
Landau-like approaches is questionable, as will be discus
in Sec. II, and the microscopic models contain a large nu
ber of unknown parameters so that their physical predicti
PRE 621063-651X/2000/62~5!/6711~11!/$15.00
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are not immediate. For these reasons, in our paper we
pose an analysis of the anisotropic part of the surface en
based on the mean field. It is valid for all values of t
nematic scalar order parameter, and allows a simple un
standing of the effect of the temperature on the anchor
coefficients.

In our analysis, we expand the surface energy in a se
of spherical harmonic functions. The coefficients of the e
pansion are the experimentally detectable anchoring co
cients. According to our model, all the anchoring coefficie
of the same order depend on the temperature in the s
manner. From this result it follows that in nematic liqu
crystals the alignment transitions driven by the surface~the
so called temperature surface transitions! are due to a surface
anchoring energy that contains contributions of different
ders.

Our paper is organized as follows. In Sec. II the us
Landau-like description of the surface energy characteriz
the nematic-substrate interface is recalled, and the temp
ture dependence of the anisotropic part of the surface en
briefly discussed. According to this approach, based on
symmetry of the nematic phase and of the substrate, the
isotropic part of the surface energy is expanded in a po
series of the surface scalar order parameter, which is con
ered a small parameter. However, since the nematic-isotr
phase transition is of first order, with a jump of the sca
order parameter at the transition temperature of;0.3, this
parameter is not really very small, and to use it as the exp
sion parameter could be questionable. In Sec. III a mo
based on a perturbation method is developed, in the fra
work of mean field theory, valid for all values of the scal
order parameter. According to this model, the surface ene
is expanded in a power series of the surface interact
which is very small with respect to the nematic mean fie
energy in the weak anchoring situation. In Sec. III this mo
is applied to the simple case of a nematic liquid crystal li
ited by a flat isotropic surface and by a surface having mo
6711 ©2000 The American Physical Society
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6712 PRE 62G. BARBERO AND A. K. ZVEZDIN
clinic symmetry. In Sec. IV a comparison with the Akulo
Zener law is discussed, and approximate expressions fo
thermal renormalization valid in the low temperature ran
are deduced. In Sec. V we reobtain the results of Sec. III
Sec. IV using the procedure of averaging with a continuo
Hamiltonian. Section VI is devoted to a comparison of t
theoretical predictions of our model relevant to the tempe
ture dependence of the anchoring energy strength with
experimental data obtained by other groups. The main res
of our paper are discussed in Sec. VII.

II. SURFACE ANCHORING ENERGY: CONSIDERATIONS
BASED ON THE SYMMETRY

We suppose that the nematic liquid crystal occupies
semi-infinite spacez>0, bounded by a flat and homoge
neous substrate atz50. In our analysis we consider onl
uniform liquid crystals. In this framework the presence of t
surface does not introduce any biaxiality, and from the cr
tallographic point of view the nematic is characterized by
uniaxial tensor order parameterQJ .

Let us consider the anisotropic part of the surface ene
W characterizing the nematic-substrate interface. When
undistorted nematic liquid crystal is in contact with a so
substrate or limited by another medium, the nematic direc
is oriented along the easy axisn0. For deviations of the ac
tual surface directornS from the easy directionn0 , W
5W(n0 ,nS). W(n0 ,n0) corresponds to the minimum valu
of W, whereasW(n0 ,nS)>W(n0 ,n0) is the surplus of sur-
face energy due to the surface distortiondn5nS2n0. For
small deviations ofnS from n0 , W(nS ,n0)5W2P2(nS•n0),
where W2,0 is the macroscopic anchoring strength a
P2(nS•n0)5(3/2)@(nS•n0)22(1/3)# the second order Leg
endre polynomial@30#. This simple expression does not ho
true when the deviation ofnS from n0 is large. In this case
W(nS ,n0) is usually approximated by an expansion in ter
of Legendre polynomials@31# of the kind W(nS ,n0)
5( lW2l P2l(nS•n0).

As stated above, the easy directionn0 is defined as the
surface orientation of the nematic director for whi
W(nS ,n0) has a minimum. In the case of homogeneous s
strates,n0 depends on the physical properties of the subst
and of the nematic liquid crystal. Several interactions c
tribute to the surface energy characterizing the nema
substrate interface. To findn0 in practice it is necessary t
write down the surface energyW in terms of the elements o
symmetry of the surface and of the nematic liquid crys
and to look for its minimum with respect to the nema
director. Experimental data show thatn0 can be temperature
dependent. This phenomenon has been termed the ‘‘temp
ture surface transition’’ and discussed by several auth
@14–18,25,32–34#.

In the past the temperature dependence ofn0 has been
analyzed by following a procedure similar to the one us
for the elastic description in the bulk@7#, i.e., by decompos-
ing the surface energy in terms of the elements of symm
of the surface and of the nematic liquid crystal, and using
expansion parameter the scalar order parameterS. In the case
of a flat isotropic surface, characterized by the geometr
normalk, the surface energy is written as@20–22#
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W5A01A1kiQi j kj1A2Qi j Qji 1A3~kiQi j kj !
2

1A4kiQil Ql j kj1O~S3!, ~1!

at second order in the surface order parameter. Stri
speaking expansion~1! is valid only for smallS. However,
since the nematic-isotropic phase transition is of first ord
with a finite jump ofS at the critical temperature (DS;0.3
@4#!, it is not clear when Eq.~1! works well. In Eq.~1! the
quantitiesAi are temperature independent phenomenolog
parameters. As discussed in Refs.@20,22# the coefficients
A2 ,A3, and A4 of the quadratic terms inS in Eq. ~1! arise
from modification of the mean field potential between tw
nematic molecules near the substrate. In contrast, the co
cientA1 has contributions both from that effect and from t
direct wall-molecule interaction@35#. Using for Qi j the ex-
pressionQi j 5(3/2)S@ninj2(1/3)d i j #, wheren5nS , Eq. ~1!
can be rewritten in terms of the angleu5cos21(nS•k)
formed bynS with k as

W5W01W2P2~cosu!1W4P4~cosu!, ~2!

where the coefficientsWi5Wi(S), i 50,2,4, are given by

W05A01
15A212A315A4

10
S2,

~3!

W25A1S1
8A317A4

28
S2, W45

18

35
A3S2.

By assuming for the surface value ofS the temperature de
pendence obtained in the bulk, by means of the phenome
logical expansion given by Eq.~2! it is possible to study the
surface transitions induced by the temperature@20,21#. This
model can also be refined by taking into account that
surface scalar order parameter is different from the bulk
by means of a Landau-Ginzburg approach@22,36–38#.

Sen and Sullivan@22# discuss how one can derive Eq.~1!
from a molecular mean field theory. They assume that
free energyF of the system under consideration is a fun
tional of the single-particle probability density, and that sp
tial variations occur only in thez direction@39#. F is written
as the sum of three bulk contributions. The first describes
interaction between the nematic and the substrate, chara
ized by a potentialU@u(z),z#. The second describes th
nematic-nematic interaction, characterized by a poten
V@u(z1),u(z2);uz12z2u#, where the subscripts 1 and 2 a
relevant to the two nematic interacting molecules. The th
term is a functional of the orientational distribution. To r
duce the nonlocal two-body term to a local one, they mak
formal gradient expansion of the single-particle probabil
density. Then, the effective surface energy generating Eq~1!
is defined by comparing the gradient expansion of the f
energy with the full starting expression forF, according to a
standard recipe@40#. In this way the surface energy receive
contributions only from the direct interactions of the nema
molecules with the substrate, viaU(u,z) evaluated at the
surface, and from the incomplete nematic-nematic inter
tion. Following this scheme it is possible to obtain the co
rect number of terms of the surface energy. However,
underlined above, the main limit of Eq.~1! is that it is an
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expansion in power series of the scalar order parameteS,
and this quantity is never very small.

III. SURFACE ANCHORING ENERGY: MEAN FIELD
APPROACH

In this section we reanalyze the temperature depende
of the anchoring energy using an approach based on m
field theory. In our analysis we neglect all the inhomoge
ities. We assume, furthermore that the surface potentia
short range.

Let us consider a surface molecule of the nematic liq
crystal. It is submitted to the interaction with the other ne
atic molecules and to the interaction with the substrate.
relevant interaction energies will be indicated byVN andVS ,
respectively. The separation of the total energy of a surf
molecule into a bulk part and a surface part is not well
fined, because the nematic symmetry is broken near the
face, as discussed in Appendix A. In our analysis we ass
that VN , due to the nematic-nematic interaction, can
evaluated in a mean field theory. It is supposed position
dependent. All variations ofVN due to the broken symmetr
connected with the presence of the bounding surface are
sidered as surface contributions, and enter in the effec
surface energyVS .

The total energyV of a surface molecule isV5VN
1VS . If VN;VS the extrapolation lengthb5K/W
;aVN /VS , whereK is an average elastic constant anda a
molecular dimension, is of the order of a molecular dime
sion @1#. In this case, in the continuum limit, it is possible
put b50 and assume that the surface nematic orientatio
fixed by the surface interaction. This situation is known
the strong anchoring case. The interesting case is the on
which VN@VS , whereb@a. It corresponds to the weak an
choring situation, to which we will limit our investigation. I
our analysis the small parameter used to expand the su
energy in a power series isVS /VN!1, in the weak anchoring
situation. On the contrary the surface scalar order param
S is not supposed a small quantity.

VN describes the tendency of the nematic molecules, c
acterized by the molecular orientationu, to be oriented along
the nematic directorn. In the following it will be approxi-
mated by means of the Maier-Saupe mean field@3#, VN

M ac-
cording to whichVN

M}niqi j nj5P2(n•u). In this framework
VN

M52vP2(n•u)S, wherev is a molecular constant andS
5^P2(n•u)& the nematic scalar parameter@4#. We will con-
sider also a generalization of the Maier-Saupe theory p
posed by Humphrieset al. @41#. According to this general-
ized mean field theory the nematic mean field, which now
indicate by VN

H , is given by VN
H52( lv2l P2l(n•u)S2l ,

whereS2l5^P2l(n•u)& are the nematic order parameters.
Let us now considerVS . It is clear that this interaction

has to describe the tendency of the surface to orient the
face nematic molecules along a given direction, which
have termed above the easy direction and indicated byn0.
This direction depends on the symmetry of the surface
on the molecular properties of the mesophase. Taking
account that we limit our analysis to nonpolar media,VS has
to be an even function ofu. It follows that VS is actually a
function of the tensorqJ and can be written, in general, a
VS(u)5VS(qJ)5(kwk(0)Lk(qJ), where Lk(qJ) indicate the
ce
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scalar quantities we can build with the molecular tensor
elementsqi j 5(3/2)@uiuj2(1/3)d i j # and the elements o
symmetry characterizing the surface. Each term of the
pansion ofVS(qJ) represents a given interaction, like the i
duced dipole–induced dipole or quadrupole-quadrupole
teraction and so on@42#; the ‘‘intrinsic’’ anchoring
coefficientswk(0) are physical parameters connected to
type of interaction described byLk(qJ). In our analysis we
assume that the physical properties of the substrate ca
considered constants in the temperature range of the nem
phase. In this framework, sincewk(0) refer to specific fun-
damental interactions, they are temperature independen
thermal effects arise only from the temperature depende
of the degree of alignment of the nematic molecules. For
previous hypothesis of the temperature independence of
physical properties of the substrate, our theory correctly
scribes nematic liquid crystals in contact with solid su
strates. However, deviations from our predictions are
pected for nematic samples oriented by means of surfacta
because their thermal behavior is similar to that of the liq
crystal materials.

For our future considerations it is useful to describe
molecular direction and the nematic director in terms of
polar angles with respect to a Cartesian reference frame
ing the z axis parallel to the geometrical normal to the fl
surface and thex axis along the possible surface anisotrop
We indicate withQ,F andu,f the polar angles definingu
andn, respectively. In this frameworkVS(qJ) can be rewrit-
ten asVS(Q,F)5(kwk(0)Lk(Q,F). By decomposing the
functionsLk(Q,F) in a series of spherical harmonic func
tions Yk

m(Q,F) we obtain Lk(Q,F)5(mak
mYk

m(Q,F).
Since Lk5Lk(qJ) and henceLk(Q,F)5Lk(p2Q,p1F)
for all k, we deduce thatk52l , i.e., Lk for odd k are absent
in the expansion ofVS(Q,F). It follows that for nonpolar
nematic liquid crystalsL2l(Q,F)5(ma2l

mY2l
m(Q,F), and the

microscopic surface energy can be written as

VS~Q,F!5(
l

w2l~0!L2l~Q,F!, ~4!

or, as follows from the discussion reported above, in
form

VS~Q,F!5(
l

w2l~0!(
m

a2l
mY2l

m~Q,F!. ~5!

The macroscopic anchoring energyW(n)5W(u,f) is ob-
tained by averagingVS over the molecular orientationsu, or
over Q and F. Since in the problem under consideratio
VS!VN , VS can be treated as a perturbation. According
the thermodynamic perturbation theory@43# we have
W(u,f)5^VS(Q,F)&, and hence

W~u,f!5(
l

w2l~0!(
m

a2l
m^Y2l

m~Q,F!&, ~6!

where ^A&5Tr(rA)/Tr(r), and r5exp(2bVN) is the den-
sity matrix. In order to derive the macroscopic surface e
ergy W(u,f) we have first to expressVS(Q,F) in terms of
a polar coordinate system based on the directorn as polar
axis. The Cartesian reference frame has to be rotated in
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a way thatz85n5^u&. We will indicate byq,w the polar
angles ofu with respect to the rotated coordinate system.
this case@44#

Yl
m~Q,F!5(

m8
Dm,m8

l
~u,f!Yl

m8~q,w!, ~7!

whereDm,m8
l (u,f) are the elements of the Wigner matri

Since there is axial symmetry about the direction ofn in the
unperturbed system, only the memberm50 of the Yl

m is

different from zero. Consequently ^Yl
m8(q,w)&

5^Yl
0(q)&dm8,0 and from Eq. ~7! we obtain that

^Yl
m(Q,F)&5Dm,0

l (u,f)^Yl
0(q)&. By taking into account

that @44# Dm,0
l (u,f)5Yl

m(u,f), we have finally, as follows
from Eqs.~4! and ~6!,

W~u,f!5(
l

w2l~0!^P2l~n•u!&L2l~u,f!, ~8!

where we have taken into account thatY2l
0 (q,w)

5P2l(cosq). Equation~8! is a consequence of the fact th
we regard all anisotropic effects as perturbations, so that
do not need to be included in the computation of the aver
values. By comparing Eq.~8! with Eq. ~4! we deduce that the
temperature dependence of the parameters describing th
isotropic part of the surface energy is given by

w2l~T!5w2l~0!^P2l~n•u!&. ~9!

Let us calculatêP2l(n•u)& in the mean field approxima
tion. By assumingVN5VN

M , Eq. ~9! gives

w2l~T!

w2l~0!
5

E
0

1

P2l~n•u!exp@bvP2~n•u!S#d~n•u!

E
0

1

exp@bvP2~n•u!S#d~n•u!

.

~10!

The integrals can easily be calculated and give the temp
ture dependence we are looking for. By assumingVN5VN

H ,
Eq. ~9! gives simply

w2l~T!

w2l~0!
5S2l . ~11!

This means that in the framework of a generalized mean fi
theory of the kind represented byVN

H the temperature depen
dence ofw2l(T)/w2l(0) coincides with the temperature d
pendence of the (2l )th scalar order parameter.

According to the analysis presented above, where
macroscopic anchoring energy is given by the series exp
sion in spherical harmonic functions shown in Eq.~8!, the
thermal renormalization of the anchoring coefficients
given by Eq.~10! or by Eq. ~11!. From these results it fol-
lows that anchoring coefficients of the same order in
expansion have the same temperature dependence. C
quently, in the framework of our model, temperature surfa
transitions are possible only in nematic samples whose
choring energy contains contributions from different ord
in the spherical harmonic function expansion.
n

ey
e
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The ratios^P2l(n•u)&/S vs S, for l 52,3, and 4, in the
Maier-Saupe approximation can be easily evaluated in
nematic phase, where 0.4<S<0.7. A direct calculation
shows that̂ P2l(n•u)&/S<0.1, for l 53,4. This explains why
usually the anisotropic part of the surface anchoring ene
given by Eq.~8! is well approximated by few terms@45#.

Let us consider, as an example, a nematic liquid cry
limited by an isotropic substrate, using the simple Mai
Saupe mean field theory. In this case only the polar angu
enters into the description, andL2l(u)5P2l(cosu). From Eq.
~10! we obtainw2(T)/w2(0)5S. This means that at the low
est order inS the temperature dependence of the anchor
energy deduced by means of symmetry considerations, a
Eq. ~2!, and by means of the mean field agree. In fact,
cording to the recipe based on symmetry one hasW2(T)
5A1S and according to the mean fieldw2(T)5w2(0)S.
However, for l 52 there is a discrepancy between the tw
approaches. In fact, according to the mean field we h
w2(T)/w2(0)5S, and w4(T)/w4(0)5^P4(n•u)&ÞS2,
whereas the approach based on symmetry predicts the
perature dependencies given by Eq.~3!. More precisely, it
predicts a renormalization of the coefficient ofP2(cosu), by
means of aS2 contribution, and a temperature dependence
the coefficient ofP4(cosu) like S2. Of course, in the limit of
small S the two predictions agree. In fact, ifS!1 the renor-
malization ofP2(cosu) in S2 can be neglected with respe
to the linear term inS. Furthermore, in this approximation
^P4(n•u)&}S2. However, in the case of largeS the discrep-
ancy between the two approaches can be large. In Fig. 1
show^P4(n•u)& andS2 vs S. From this figure it follows that
in the nematic range (0.4<S<1) the difference betweenS2

and ^P4(n•u)& is always rather large.
Let us consider now a nematic sample bounded by a

face having monoclinic symmetry, such as the one obtai
by means of the SiO oblique evaporation technique@18#. The
(y,z) plane is the evaporation plane, the normal to the s
strate is parallel to thez axis, and the direction of the groove
coincides with thex direction. In this framework, at secon
order in the spherical harmonic expansion we have

FIG. 1. Dependence of^P4(n•u)&5S4 vs S. TheS dependence
of S2, which is the next term in the surface energy expansion p
dicted by Landau-like analyses, and ofS10/3, predicted by our mean
field approach in the large range ofS, are also shown. As is eviden
from the figure, the Akulov-Zener law works well when the flu
tuations ofu with respect ton are small~largeS).
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L2~Q,F!5 (
m522

2

a2
mY2

m~Q,F!. ~12!

Since@46#

Y2
62~Q,F!5A15/~32p!sin2Q exp~62iF!,

Y2
61~Q,F!57A15/~8p!sinQ cosQ exp~6 iF!, ~13!

Y2
0~Q,F!5A5/~16p!~3 cos2Q21!,

from Eq. ~8! we obtain

W~u,f!5w2~T!@C1cos~2u!1C2sin2u cos~2f!

1C3sin~2u!cosf#, ~14!

where Ci are numerical factors@47#. This equation shows
clearly that, at second order in the spherical harmonic fu
tion expansion ofW(u,f), the nematic orientation is ex
pected to be temperature independent. The temperature
face transitions, in which the nematic orientation variatio
are driven by the surface, can be interpreted, in the fra
work of our model, only by taking into account also terms
Y4

m(Q,F) in the microscopic surface energyVS(Q,F).

IV. COMPARISON WITH AKULOV-ZENER LAW

At low temperature, when the fluctuations are small, i
2bVN@1, it is possible to rewrite Eq.~10! in an interesting
manner, well known in other fields of solid state physics
the Akulov-Zener law@48,49#. In order to obtain this expres
sion, we have to take into account that in the low tempe
ture region, whereS;1 and hence the fluctuations ofu with
respect to n are very small, n•u5cosq;12(1/2)q2

1O(4), i.e., q!1. In this framework P2(n•u);1
2(3/2)q21O(4), and P4(n•u);125q21O(4). Conse-
quently, by taking into account thatw2(T)/w2(0)
5^P2(n•u)& and w4(T)/w4(0)5^P4(n•u)&, we obtain
@50#, by assumingVN5VN

M ,

w2~T!

w2~0!
5

E
0

pS 12
3

2
q2DexpFbvSS 12

3

2
q2D Gqdq

E
0

p

expFbvSS 12
3

2
q2D Gqdq

;12
1

bvS

;expS 2
1

bvSD ~15!

and
c-

ur-
s
e-

.,

s

-

w4~T!

w4~0!
5

E
0

p

~125q2!expFbSS 12
3

2
q2D Gqdq

E
0

p

expFbvSS 12
3

2
q2D Gqdq

;12
10

3bvS

;expS 2
10

3bvSD . ~16!

Since according to the Maier-Saupe theoryS5^P2(n•u)&,
from Eqs. ~15! and ~16! we have w2(T)/w2(0)5S and
w4(T)/w4(0)5S10/3. In Fig. 1 we shoŵ P4(n•u)& andS10/3

vs S in the nematic phase (0.4<S<1). As follows from this
figure, for large values ofS ^P4(n•u)&;S10/3. In the same
figure we also showS2, which is the term predicted by
Landau-like models at second order inS.

The calculations reported above forl 51 andl 52 can be
generalized for alll. The final result is that in the low tem
perature region the thermal renormalization of the anchor
coefficient is

w2l~T!

w2l~0!
5^P2l~n•u!&5Sl (2l 11)/3. ~17!

Equation ~17! has been obtained by assumingVN5VN
M .

However, as is shown in Appendix B, it holds true also in t
case whereVN5VN

H .
Expression~17! can be compared with the Akulov-Zene

law for ferromagnetic materials well known in solid sta
physics@51,52#,

Ln~T!

Ln~0!
5S MS~T!

MS~0! D
n(n11)/2

, ~18!

whereMS(T) is the magnetization andLn(T) is then-order
coefficient of the magnetic crystallographic anisotropy, ma
netostriction, etc.

It is not difficult to show that expression~17! follows
immediately from the Akulov-Zener law. Indeed, in the lo
temperature range whereS;1 and henceq!1, P1(n•u)
5n•u;12(1/2)q2, P2(n•u);12(3/2)q2;P1

3(n•u).
Consequently,S(T)5^P2(n•u)&;^P1(n•u)&35q3. Since
MS(T)/MS(0)5^P1(n•u)&5q, Eq. ~17! yields

w2l~T!

w2l~0!
5ql (2l 11), ~19!

which is just the Akulov-Zener formula forw2l(T).
Although the proof of Eqs.~15! and ~16! is rigorously

valid only for small perturbations and low temperatures,
exact calculation performed for magnetic materials@53#
shows that the power law is fairly accurate even for re
tively large perturbations, and is roughly followed almost
to the critical temperature.

At arbitrary temperatures we have

w2l~T!

w2l~0!
5^P2l~n•u!&5L2l~Z 21

„S~T!…!, ~20!
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where

Ln5

E
0

1

Pn~n•u!exp@P2~n•u!/t#d~n•u!

E
0

1

exp@P2~n•u!/t#d~n•u!

, ~21!

Z5

E
0

1

P2~n•u!exp@P2~n•u!/t#d~n•u!

E
0

1

exp@P2~n•u!/t#d~n•u!

5S, ~22!

and

t5
1

bvS~T!
5

kBT

vS~T!
~23!

is a reduced temperature. This parametric representatio
lows one to deducêP2l(n•u)& as a function ofS, without
knowing the interaction parameterv.

V. PROCEDURE OF AVERAGING WITH A CONTINUOUS
HAMILTONIAN

The aim of this section is to reobtain the results of Sec.
and Sec. IV using the procedure of averaging with a conti
ous Hamiltonian~elastic energy density!. According to Eq.
~8! the macroscopic anchoring energy can be expanded
series ofL2l(u,f). The expansion coefficients are the a
choring coefficientsw2l(T)5w2l(0)^P2l(n•u)& thermally
renormalized by the presence of^P2l(n•u)&. Using the local
reference frame, in whichn•u5cosq, whereq5q(rS) and
rS is the position vector of a surface nematic molecu
P2l(n•u) can be decomposed as

P2l~n•u!5P2l~cosq!5 (
m50

l

b2m
2l cos~2mq!, ~24!

where b2m
2l are numerical factors@46#. From Eq.~24! it is

possible to obtain the thermal average ofP2l(n•u) using the
procedure of averaging with a continuous Hamiltonian. W
indicate with the subscriptloc the thermal average obtaine
in this framework. We have

^P2l~n•u!&5 (
m50

l

b2m
2l ^cos~2mq!& loc . ~25!

In the local reference frame, whereniz8, the elastic energy
density is f 05(1/2)K(¹q)2, as shown in Appendix C
where K is the Frank elastic constant, of the order ofK
;VN /a @1#. This expression forf 0 is valid in the harmonic
approximation. Hence it holds true only forq!1. By de-
composing q in a Fourier series we haveq
5(q@A(q)cos(q•r )1B(q)sin(q•r )#. The elastic energyH0
5*Vf 0dr , where V is the volume of the nematic sampl
using Fourier’s expansion ofq, is given by H0
5(VK/2)(qq

2@A2(q)1B2(q)#. The thermal average o
cos(nq) is
al-

I
-

a
-

,

e

^cos~nq!& loc5

E D~q!cos~nq!exp~2bH0!

E D~q!exp~2bH0!

. ~26!

By writing cos(nq) in the exponential form, and taking int
account the expression forH0 written above, we obtain

^cos~nq!& loc5Re
)

q
E dA~q!dB~q!e2gq

)
q
E dA~q!dB~q!e2nq

. ~27!

In Eq. ~27! gq5gq
A1gq

B , where

gq
A5

1

2
bVKq2FA~q!2 i

n

bVK

cos~q•r !

q2 G 2

1
n2

2bVK

cos2~q•r !

q2
, ~28!

gq
B5

1

2
bVKq2FB~q!2 i

n

bVK

sin~q•r !

q2 G 2

1
n2

2bVK

sin2~q•r !

q2
, ~29!

and

nq5
1

2
bVKq2@A2~q!1B2~q!#. ~30!

Taking into account that*0
`dx exp(2lx2)5Ap/l, we have

for the thermal averages we are looking for

^cos~nq!& loc5expS 2
n2

2bVK (
q

1

q2D . ~31!

Since

1

V (
q5qmin;0

qmax52p/a
1

q2
5

1

8pa
, ~32!

we obtain, finally, ^cos(nq)&loc5exp@2(1/2)n2t#, where t
51/(4pbKa). It follows that ^cos(2mq)&loc5exp@22m2t#,
and consequently, using Eq.~25!,

^P2l~n•u!&5 (
m50

l

b2m
2l exp@22m2t#, ~33!

which represents a generalization of the result reported
Ref. @45#.

The expression used above forf 0 is valid only in the
quadratic approximation for the elastic energy. It follows th
the thermal fluctuations ofu with respect ton have to be
small. This implies thatq!1, and hence, as follows from
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the expression for̂cos(nq)&loc written above,t!1. In this
approximation exp@22m2t#;cos(2mAt). By substituting this
result into Eq.~33! we obtain

^P2l~n•u!&5 (
m50

l

b2m
2l cos~2mAt !. ~34!

It is useful, for further considerations, to putAt5^q&. In this
manner Eq.~34! reads

^P2l~n•u!&5 (
m50

l

b2m
2l cos~2m^q&!5P2l~coŝ q&!,

~35!

if Eq. ~24! is taken into account. The macroscopic anchor
energy can be rewritten, as follows from Eq.~8! and Eq.
~35!, as

w~u,f!5(
l 50

`

w2l~0!P2l~coŝ q&!L2l~u,f!. ~36!

By taking into account that̂q&!1 we have that

^P2l~n•u!&;expH 2
l ~2l 11!

2
^q&2J ~37!

and

^P2~n•u!&5S;expH 2
3

2
^q&2J . ~38!

From Eq.~38! the thermal average ofq is connected toSby
^q&252(2/3)lnS. Substituting this result into Eq.~37! we
have finally ^P2l(n•u)&5Sl (2l 11)/3, which coincides with
the Akulov-Zener law reported above in the low temperat
region.

VI. THEORETICAL PREDICTIONS AND EXPERIMENTAL
DATA

The temperature dependence of the anchoring en
strength has been measured by several groups with diffe
techniques@13,19,36,37,54–57#. In this section we shal
compare our theoretical predictions with the experimen
data.

The simplest case to consider is the one relevant to
tropic substrates treated with a surfactant to give homeo
pic orientation. In this experimental arrangement the anch
ing energy strength is usually measured by means o
Freedericksz-type experiment@13,54#. The anisotropic part
of the surface energy relevant to this situation is given b

W~u!5(
l

w2l~T!P2l~cosu! ~39!

as discussed at the end of Sec. III. The anchoring ene
strength is experimentally deduced by measuring the thr
old field for the Freedericksz transition@1,30#. In this way
one measures the quantity@13,54#
g

e

gy
nt

l

o-
o-
r-
a

gy
h-

w5H d2W~u!

du2 J
u50

52(
l

l ~2l 11!w2l~T!. ~40!

w.0 because the homeotropic orientation is stable in
absence of the magnetic field. As discussed above, two te
of the expansion Eq.~39! are enough to approximateW(u).
By assumingW(u)5w2(T)P2(cosu)1w4(T)P4(cosu), Eq.
~40! reads

w52@3w2~0!^P2~n•u!&110w4~0!^P4~n•u!&#, ~41!

if Eq. ~9! is taken into account. In the following Eq.~41! will
be written as

w5aS1g^P4~n•u!&, ~42!

whereS5^P2(n•u)&, a523w2(0), andg5210w4(0). In
the low temperature region, wherêP4(n•u)&5S10/3, Eq.
~42! is equivalent to

w5aS1gS10/3. ~43!

In Ref. @13# the experimental data refer to the nema
liquid crystal dialkoxyphenilbenzoate~5OO5! sandwiched
between two glass slides coated with diacetylenic phosp
lipid surfactant. This sample is shown to exhibit a surfa
structural transition several degrees below the nema
isotropic phase transition temperature (TNI), at T5TS . For
TS<T<TNI the sample is uniformly oriented in the home
tropic orientation, whereas forT,TS the sample is tilted.
The measurement ofw has been done in the temperatu
rangeTS<T<TNI . In Fig. 2 we report the experimental da
from @13# and our theoretical best fit, obtained by means
Eq. ~43!. For S(T) we assume

S~T!5S~TNI!S Tc2T

Tc2TNI
D 1/2

, ~44!

with S(TNI);0.32 andTc2TNI;0.5K @58#. The parameters
of the best fit area;2.0431022 erg/cm2 and g;21.17
31022 erg/cm2. The agreement of our theory with the e
perimental data is reasonably good.

FIG. 2. Behavior of the anchoring energy strength near a te
perature surface transition at the nematic substrate interface ac
ing to Di Lisi et al. @13#. Points: experimental data; solid line: ou
best fit.
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In Ref. @54# the experimental data refer to the nema
liquid crystal N-~P-methoxy benzilidene!-P-butylaniline
~UBBA! in a cell with glasses treated with dodecy
trimethyl–ammonium chloride~DTAC!. In Fig. 3 we report
the experimental data from@54# and our theoretical best fi
obtained by means of Eq.~42!. Since the temperature rang
is of the order of 20 K, it is no longer correct to use forS(T)
its expression given by Landau’s theory, of the kind of E
~44!, and the Akulov-Zener approximation for^P4&. For the
fit we use forS(T) and for ^P4&(T) the experimental data
obtained by measurements of resonance Raman scatt
@58#. The parameters of the best fit area;3.54
31022 erg/cm2 andg;25.1031022 erg/cm2. In Fig. 3 the
open and closed circles refer to two different samples of
same liquid crystal, indicated with the names ‘‘sample A
and ‘‘sample B,’’ analyzed in@54#. In this case also the
agreement between our theoretical predictions and the
perimental data is reasonably good over the whole temp
ture range.

A comment concerning the parametersa and g of our
best fits is necessary becauseg is of the same order as o
larger thana. The contribution ofw linear in S could be
connected with the interaction of the nematic molecules w
a surface fieldE(z), static @59# or fluctuating, due to the
substrate. For homogeneous substrates, limited by a flat
face, this field is parallel to the surface geometrical norm
The relevant contribution to the surface energy is prop
tional to qi j EiEj or to qi j ]Ei /]xj . The first term is due to
the molecular dielectric anisotropy, the second to the m
lecular quadrupolar momentum. These terms, after ther
dynamic averaging, are proportional toS. They are presen
even in the case in which the substrate is isotropic. Howe
the experimental data analyzed in our paper refer to nem
samples, homeotropically oriented by means of surfacta
In this case the surfactant deposited on the glass plate g
rise to a smectic-A-like layer, characterized by anisotrop
dielectric properties, in particular by anisotropic polarizab
ity. It follows that the electrostatic interaction between t
nematic medium and this smectic-A-like layer gives a con-
tribution to the anisotropic surface energy. It is mainly due
the interactions between~i! the fluctuating dipole in the
nematic moleculesp(t)5p(t)u and the dipolar momentum
induced in the surfactant, and~ii ! the electrical quadrupola
momentum of the nematic moleculesDJ5e0qJ, wheree0 is

FIG. 3. Temperature dependence of the anchoring ene
strength at the nematic liquid crystal–wall interface according
Rosenblatt@54#. Points: experimental data; solid line: our best fi
.
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the molecular quadrupolar momentum modulus, and the
polar momentum induced in the surfactant.

The first contribution to the surface energy is proportion
to A^p2(t)&, whereA is a molecular property and̂& means
a time average. After thermodynamic averaging, the mac
scopic surface energy connected to this term is found to
A^p2(t)&S. Hence,a5A^p2(t)&.

The second contribution to the surface energy is prop
tional to Ge0

2, whereG is another molecular property. Th
relevant contribution to the macroscopic surface energy
Ge0

2^P4&. Consequentlyg5Ge0
2.

Hence, the surfactant plays two different roles. First,
strongly reduces the effect of the surface field due to
substrate, because it introduces a screening between the
strate and the liquid crystal. Second, it is responsible for
interaction between the nematic molecular fluctuating dip
and the static quadrupole and the induced dipole in the
factant. The first contribution is proportional to the square
the fluctuating dipole, whereas the second contribution
proportional to the static quadrupolar momentum. For t
reason thê P4& contribution tow is expected to be not neg
ligible with respect to theS contribution.

The classification of the contributions tow from funda-
mental interactions reported above is supported by the
perimental data of Ref.@57#, where the anchoring energy of
monomer and its dimer at a polymer-coated interface is m
sured. The liquid crystal investigated is 5OO5 and its dim
These liquid crystals have rather low conductivity. Hence
a first approximation, we can neglect the contribution to
anisotropic part of the surface energy connected with se
tive ion absorption, giving rise to a static surface field.

The samples were in planar alignment, obtained by r
bing glass substrates coated with polymide. The ancho
energy was obtained by measuring the Freedericksz m
netic threshold field in the splay geometry. The experimen
data show that for both monomer and dimer the anchor
energy increases with decreasing temperature. The ancho
energy for the dimer, however, was found to be an orde
magnitude larger than that for the monomer, at compara
reduced temperature. According to the authors of Ref.@57#
this monomer-dimer pair represents a nearly ideal system
study: one species is simply two monomers attached alm
rigidly end to end. From this observation, it follows that th
fluctuating dipole, along the major axis, of the dimer is twi
that of the monomer. Furthermore, the electrical quadrup
moment of the dimer is also expected to be twice that of
monomer. The surface energy is proportional to the num
of interacting atoms forming the nematic molecules, wh
for the dimer is twice that for the monomer. Consequen
A(dim)52A(mon) andG(dim)52G(mon). Hence, we ex-
pect that the anchoring energy for the nematic liquid crys
formed by dimer will be eight times that of the liquid cryst
formed by the monomer. Our prediction about the incre
of the anchoring energy for the dimer is a little smaller th
that detected experimentally. However, we are aware
other interactions contribute to the effective anchoring
ergy, and our prediction has to be considered just as a v
rough estimate.

In Fig. 4 and Fig. 5 we present the experimental data fr
@57# relevant to monomer and dimer, respectively, and
best fits. Since we do not know the trueS(T) and ^P4&(T)
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functions, we evaluate them by assumingVN5VN
M . The pa-

rameters of the best fits area(mon);21.14
31022 erg/cm2, g(mon);4.8131022 erg/cm2, and
a(dim);29.8131022 erg/cm2, g(dim);43.7531022

erg/cm2. The results of the best fits confirm the model pr
posed. In fact, according to the discussion reported abov

a

g
5

A^p2~ t !&

Ge0
2

, ~45!

and

p~ t,dim!;2p~ t,mon!, e0~dim!;2e0~mon!,

A~dim!;2A~mon!, G~dim!;2G~mon!. ~46!

Consequently

a~dim!

g~dim!
;

a~mon!

g~mon!
, ~47!

in agreement with the results of our best fits.

FIG. 4. Temperature dependence of the anchoring ene
strength for the monomer 5OO5 planar orientation according
@57#. Points: experimental data; solid line: our best fit.

FIG. 5. Temperature dependence of the anchoring ene
strength of the dimer of 5OO5 with orientation according to@57#.
Points: experimental data; solid line: our best fit.
-
,

VII. CONCLUSION

We have evaluated the thermal renormalization of the
choring energy for the whole angular range of the surfa
director. It has been shown that the renormalization due
the thermal fluctuations of the anchoring coefficientsw2l is
of the kind w2l(T)/w2l(0)5^P2l(n•u)&. If the nematic
phase is described by means of a generalized mean
theory one simply obtainsw2l(T)/w2l(0)5S2l , whereS2l is
the (2l )th scalar order parameter. In the particular case
which the nematic phase is described by the Maier-Sa
theory, w2l(T)/w2l(0) coincides with the average value o
the (2l )th Legendre polynomial. We have also shown that
the lowest order in the scalar order parameter the sim
approach based just on the symmetry of the problem ag
with our mean field approach.
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APPENDIX A

In the bulk the mean field energy due to the interaction
a nematic molecule with other nematic molecules is of
kind VN5VN(n•u), i.e., it depends only on the relative or
entation ofu with respect ton. The symmetry of the inter-
action is SO3. Near the surface this symmetry is broken,
VN is, in general, of the type

VN5VN~r ,u,n!5VN~z,u•r ,u•n!, ~A1!

wherer is the position of a given nematic molecule, andz its
distance from the surface. As discussed elsewhere@60#, the
functional dependence ofVN on u•r can be responsible fo
subsurface deformations. Near the surface it is possible
rewrite Eq.~A1! as

VN5VN~n•u!1dVN~z,u•r ,u•n!, ~A2!

where

dVN~z,u•r ,u•n!5VN~z,u•r ,u•n!2VN~n•u! ~A3!

represents the deviation of the actual mean field energyVN
from the SO3 symmetry. The functiondVN(z,u•r ,u•n)Þ0
in a surface layer whose thickness is of the order of the ra
of the molecular forces responsible for the nematic pha
From this observation it follows thatdVN(z,u•r ,u•n) can be
considered as an ‘‘intrinsic’’ surface energy. The effecti
surface energy is then obtained by adding to the surface
ergy due to the direct interaction between the nematic m
ecules and the substrate the intrinsic surface energy. In
analysisVS has the meaning of the effective surface ener
andVN meansVN(n•u).
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APPENDIX B

Let us assumeVN5VN
H52(v2lS2l P2l(cosq). In the low

temperature region, where the fluctuations ofu with respect
to n are small,q!1. In this case

P2l~cosq!512
1

2
l ~2l 11!q21O~4!. ~B1!

Consequently,

VN
H~cosq!52@N2Mq2#1O~4!, ~B2!

where

N5(
l

v2lS2l and M5
1

2 (
l

l ~2l 11!v2lS2l . ~B3!

It follows that

S2l5^P2l~n•u!&512
1

2
l ~2l 11!

E
0

`

q3e2Mq2
dq

E
0

`

qe2Mq2
dq

,

~B4!

from which one obtains

S2l512
l ~2l 11!

2M
;expH 2

l ~2l 11!

2M J . ~B5!

In particular, the main nematic order parameter is found
be

S5^P2~n•u!&5expS 2
3

2M D . ~B6!

By substituting Eq.~B6! into Eq. ~B5! we have, finally,

S2l5Sl (2l 11)/3, ~B7!

which coincides with Eq.~17!.

APPENDIX C

The aim of this Appendix is to show that in the loc
reference frame the elastic energy density can be writte
f 05(1/2)K@“q(r )#2. The elastic energy of a nematic liqui
crystal is given by

H05 1
2 E

V
@K1~div n!21K2~n•rotn!21K3~n3rotn!2#dr ,

~C1!
o

as

whereK1 , K2 andK3 are the Frank elastic constants@1#. In
the one-constant approximation, whereK15K25K35K,
Eq. ~C1! becomes

H05
1

2
KE

V
@~div n!21~rotn!2# dr . ~C2!

In the local reference frame in whichn coincides with the
polar axis (z axis!, the fluctuations ofu(r ) at any pointr are
described by small nonzero componentsux(r ) anduy(r ). At
the second order inux(r ) anduy(r ) Eq. ~C2! reads

H05
1

2
KE

V
$@ux,x~r !1uy,y~r !#21@ux,y~r !2uy,x~r !#2

1@ux,z~r !#21@uy,z~r !#2%dr , ~C3!

whereui , j (r )5]ui(r )/]xj . Let us expandui(r ) in an expo-
nential Fourier series as

ui~r !5(
q

ui~q!exp~ iq•r !, ~C4!

whereu* (q)5ui(2q) becauseui(r ) are real quantities. By
substituting Eq.~C4! into Eq. ~C3! we obtain

H05
KV

2 (
q

@ uux~q!u21uuy~q!u2#. ~C5!

In the limit of small fluctuationsuz(r )512(1/2)@ux
2(r )

1uy
2(r )# and alsouz(r )5cosq(r )512(1/2)q2(r ). Conse-

quently q2(r )5ux
2(r )1uy

2(r ). A simple calculation shows
that uq(q)u25uux(q)u21uuy(q)u2, whereq(q) are the coef-
ficients of the exponential Fourier expansion ofq(r ). From
this observation we derive that Eq.~C5! is equivalent to

H05
KV

2 (
q

q2uq~q!u2. ~C6!

It can be rewritten as

KV

2 (
q

q2@A2~q!1B2~q!#, ~C7!

whereA(q) andB(q) are the Fourier coefficients of the ex
pansion ofq(r ) in terms of cos(q•r ) and sin(q•r ), which we
have used in the text. A direct calculation shows that E
~C6! can be obtained by assumingf 05(1/2)K@“q(r )#2 and
decomposingq(r ) in a Fourier series.
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